Lecture 22 – Chapter 18, Section 1
Buffers

- Buffer Intro
- Vinegar
- Henderson-Hasselbalch
Buffers

- Critically important biologically and industrially
 - Buffers resist changes in pH
 - Organisms
 - Lakes
 - Oceans

- Just the same equilibrium kinds of problems we have been doing

- Buffers prepared from conjugate acid-base pair
 - MUST be a weak acid/base
 - Excess of both partners of the conjugate acid-base pair
Example – Vinegar

• What are concentrations of all components of a solution made from
 – 0.125 mol solid sodium acetate (NaCH₃CO₂)
 – 1.00 L 0.250 M acetic acid (CH₃COOH)
 – K_a of acetic acid is 1.8×10^{-5}

• Use our normal equilibrium procedure to get
 – $[H_3O^+] = 3.6 \times 10^{-5}$ M or pH = 4.44
 – $[CH_3COOH]$ still 0.250 M
 – $[CH_3COO^-]$ still 0.125 M
Acetic acid / acetate buffer

• This solution fits our definition of a buffer
 – Weak acid – acetic acid
 – Conjugate base – acetate ion
 – Excess of both. Final concentrations same as initial

• Note that we could have gotten the same buffer from
 – 0.375 M acetic acid plus 0.125 moles of NaOH
 • Strong base would convert 0.125 moles of acid to acetate (its conjugate base
 – 0.375 M acetate plus 0.250 moles of HCl
 • Strong acid would convert 0.250 moles of acetate to acetic acid (its conjugate acid)
Henderson-Hasselbalch

A simpler way to calculate buffers

\[K_a = \frac{[H_3O^+]_{eq} [A^-]_{eq}}{[HA]_{eq}} \]

\[\log K_a = \log \left(\frac{[H_3O^+]_{eq} [A^-]_{eq}}{[HA]_{eq}} \right) \]

\[\log K_a = \log [H_3O^+]_{eq} + \log \left(\frac{[A^-]_{eq}}{[HA]_{eq}} \right) \]

\[-pK_a = -pH + \log \left(\frac{[A^-]_{eq}}{[HA]_{eq}} \right) \]

\[pH = pK_a + \log \left(\frac{[A^-]_{eq}}{[HA]_{eq}} \right) \]

\[pH = pK_a + \log \left(\frac{[A^-]_{init}}{[HA]_{init}} \right) \]

- As long as the acid and its conjugate base are in excess (i.e. we have a decent buffer) the approximation in the last line works.
- The same as saying \(x \) is small in our equilibrium calculation.
- If \(pH \) is within 1 unit or so of \(pK_a \), things should be OK.
Who are these guys anyway?

• Lawrence Joseph Henderson (1878-1942)
 – American physiologist who studied blood chemistry
 – Discovered buffer systems in blood
 – Became chemistry professor at Harvard
 – Later became sociologist
 – Wrote equation in 1908 to describe carbonic acid in blood

• Karl Albert Hasselbalch (1874-1962)
 – Danish chemist
 – Rewrote Henderson’s equation in log form in 1916
Henderson-Hasselbalch
A simpler way to calculate buffers

\[K_a = \frac{[H_3O^+]_{eq} [A^-]_{eq}}{[HA]_{eq}} \]

\[\log K_a = \log \left(\frac{[H_3O^+]_{eq} [A^-]_{eq}}{[HA]_{eq}} \right) \]

\[\log K_a = \log [H_3O^+]_{eq} + \log \left(\frac{[A^-]_{eq}}{[HA]_{eq}} \right) \]

\[-pK_a = -pH + \log \left(\frac{[A^-]_{eq}}{[HA]_{eq}} \right) \]

\[pH = pK_a + \log \left(\frac{[A^-]_{eq}}{[HA]_{eq}} \right) \]

\[pH = pK_a + \log \left(\frac{[A^-]_{init}}{[HA]_{init}} \right) \]

- As long as the acid and its conjugate base are in excess (i.e. we have a decent buffer) the approximation in the last line works.
- The same as saying \(x \) is small in our equilibrium calculation.
- If \(pH \) is within 1 unit or so of \(pK_a \), things should be OK.
Redo our vinegar example

• Recall initial concentrations
 – Acetic acid 0.250 M
 – Acetate ion 0.125 M

Plug into Henderson-Hasselbalch equation

\[pH = pK_a + \log \left(\frac{[A^-]_{init}}{[HA]_{init}} \right) \]

\[pH = -\log(1.8 \times 10^{-5}) + \log \left(\frac{0.125M}{0.250M} \right) \]

\[pH = 4.7447 - 0.3010 \]

\[pH = 4.44 \]
Buffer Schmuffer, Who Cares?

• Let’s add 10.0 mL of strong HCl (6.00 M) to our buffer

• To make life simple, let’s pretend we still have 1.00 L
• We have added \((0.0100 \text{ L})(6.00 \text{ mol/L}) = 0.0600 \text{ mol H}_3\text{O}^+\)
• This converts acetate ions to acetic acid
 \[
 \text{CH}_3\text{COO}^- + \text{H}_3\text{O}^+ \rightarrow \text{CH}_3\text{COOH} + \text{H}_2\text{O}
 \]

• So, now we have \(0.125 - 0.0600 = 0.065 \text{ M acetate ion}\)
• And \(0.250 + 0.0600 = 0.310 \text{ M acetic acid}\)
Use Henderson-Hasselbalch to calculate the new pH

\[K_a = 1.8 \times 10^{-5} \quad [\text{acetic acid}] = 0.310 \text{ M} \quad [\text{acetate}] = 0.065 \text{ M} \]

\[p\text{H} = pK_a + \log\left(\frac{[A^-]_{\text{init}}}{[HA]_{\text{init}}} \right) \]

<table>
<thead>
<tr>
<th>25%</th>
<th>1. 4.07</th>
</tr>
</thead>
<tbody>
<tr>
<td>25%</td>
<td>2. 4.42</td>
</tr>
<tr>
<td>25%</td>
<td>3. 5.07</td>
</tr>
<tr>
<td>25%</td>
<td>4. 5.42</td>
</tr>
</tbody>
</table>
What if we add 10 mL of 6 M HCl to 1.00 L of water instead of buffer? Again, assume total final volume is just 1.00 L. What is the new pH?

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>25%</td>
<td>1. 1.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25%</td>
<td>2. 1.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25%</td>
<td>3. 4.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25%</td>
<td>4. 4.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Buffer soaks up acid/base

- Buffer has lots of excess weak acid (acetic acid) and lots of excess conjugate base (acetate ion)

- This means that the 0.60 moles of H₃O⁺ were all used up in converting acetate ion to acetic acid.

- None of the H₃O⁺ ions generated by the HCl were left.

- We did change the acetic acid / acetate ion ratio, so pH did shift, but only a little
Today
• Finish CAPA #13

Wednesday
• Get serious about Chapt 18
• Continue working extra end-of-chapter questions