Lecture 21 – Chapter 17, Sections 5-7
More weak acids and bases

- Chemistry of weak vs. strong acids
- Multiple equilibria – polyprotic acids
 - Examples
Recognizing Acids

1. Strong Acids. Memorize the formulas and names of the six common strong acids.

<table>
<thead>
<tr>
<th>Acid</th>
<th>Formula</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCl (hydrochloric acid)</td>
<td>HCl</td>
<td>hydrochloric acid</td>
</tr>
<tr>
<td>HBr (hydrobromic acid)</td>
<td>HBr</td>
<td>hydrobromic acid</td>
</tr>
<tr>
<td>HI (hydroiodic acid)</td>
<td>HI</td>
<td>hydroiodic acid</td>
</tr>
<tr>
<td>HNO₃ (nitric acid)</td>
<td>HNO₃</td>
<td>nitric acid</td>
</tr>
<tr>
<td>HClO₄ (perchloric acid)</td>
<td>HClO₄</td>
<td>perchloric acid</td>
</tr>
<tr>
<td>H₂SO₄ (sulfuric acid)</td>
<td>H₂SO₄</td>
<td>sulfuric acid</td>
</tr>
</tbody>
</table>

2. Weak Acids. Recognize these from general formulas.

- **A. Oxoacids:** \(H_xE_y \), where \(x = 1 \rightarrow 3 \), \(y = 1 \rightarrow 4 \), \(E = B, C, N, P, S, Cl, Br, I, \) others
 - HClO (hypochlorous acid)
 - HNO₂ (nitrous acid)
 - HBrO (hypobromous acid)
 - HNO₂ (nitrous acid)
 - H₂CO₃ (carbonic acid)
- **B. Carboxylic acids:** \(RCO₂H \), where \(R = H \) or any organic group
 - HCO₂H (formic acid)
 - C₆H₅CO₂H (benzoic acid)
- **C. Conjugate acid of a weak base**
 - NH₃⁺ (ammonium ion)
 - C₅H₅NH⁺ (pyridinium ion)
- **D. Miscellaneous examples**
 - HF (hydrofluoric acid)
 - H₂S (hydrogen sulfide)

Recognizing Bases

1. Strong Bases. Memorize the Group 1 hydroxides (\(MOH \)) and the soluble Group 2 hydroxides (\(M(OH)₂ \)).

<table>
<thead>
<tr>
<th>Base</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiOH</td>
<td>NaOH</td>
</tr>
<tr>
<td>Ca(OH)₂</td>
<td>Sr(OH)₂</td>
</tr>
<tr>
<td>KOH</td>
<td>Ba(OH)₂</td>
</tr>
</tbody>
</table>

2. Weak Bases. Recognize these from general formulas.

- **A. Ammonia (\(NH₃ \)) and amines** \(RNH₂, R₂NH, R₃N \)
 - CH₃NH₂ (methylamine)
 - (CH₃CH₂)₂NH (diethylamine)
 - (C₆H₅)₂NH (diphenylamine)
 - H₂NCH₂CH₂NH₂ (ethylenediamine)
- **B. Conjugate base of a weak acid**
 - F⁻ (fluoride)
 - CN⁻ (cyanide)
 - CH₃CO₂⁻ (acetate)
 - OCl⁻ (hypochlorite)
 - SO₄²⁻ (sulfate)
 - PO₄³⁻ (phosphate)
 - HCO₃⁻ (hydrogen carbonate)
 - NO₂⁻ (nitrite)
 - C₆H₅CO₂⁻ (benzoate)
What makes an acid stronger or weaker?

• Charge
• Strength of X-H bond

• Charge is pretty simple
 – Something positive would like to get rid of positive charge, so it is a good acid, lousy base
 – Something negative would really like some extra positive charge, so it is a lousy acid, good base
 – Something neutral could be most anything
Acid strength?

- More polar bond \rightarrow stronger acid
 - HF stronger acid than CH$_4$
- Weaker X-H bond \rightarrow stronger acid
 - HCl stronger acid than HF
 - HClO$_4$ stronger acid than HOCl
Other groups affect -OH bond

- Trichloroacetic acid is stronger than acetic acid
- Cl pulls lots of electron density to itself and away from rest of molecule
- So, there is less electron density between O and H
 - It has a weaker OH bond and is a stronger acid
How acidic is the bold proton in oxalic acid compared to formic acid?

- Oxalic is more acidic than formic
- Oxalic is less acidic than formic
- They are essentially the same
How acidic is the second proton in oxalic acid compared to formic acid?

1. 2nd Oxalic proton is more acidic than formic acid
2. 2nd Oxalic proton is less acidic than formic acid
3. They are essentially the same
Polyprotic Acids form Multiple Equilibria

- H_2SO_4 has two protons that can come off
- Three species are all in equilibrium along with H_3O^+ and OH^-
 - H_2SO_4
 - HSO_4^-
 - SO_4^{2-}
- Two pairs of conjugate acids and bases
- See Example 17-14
 - Solve equilibrium problem for first proton
 - Plug answers in as starting point for second equilibrium problem
 - Continue if there are still more acidic protons
Polyprotic acid example

- Find the concentrations of all of the species in a 0.062 M solution of carbonic acid \(\text{H}_2\text{CO}_3 \)

\[
\begin{align*}
K_{a1} &= 4.2 \times 10^{-7} \\
K_{a2} &= 4.8 \times 10^{-11}
\end{align*}
\]
Today

- Chem seminar (student-invited speaker) 4:00 Schaap 1000

Monday

- Start on CAPA #13
- Start reading Chapt 18
- It’s not too early to start thinking about Exam 2…