Lecture 4 – Chapter 14
New and Improved Thermodynamics

- Spontaneity
- Entropy – 2nd Law of Thermodynamics
- 3rd Law of Thermodynamics
- Calculating Entropy Changes
Thermodynamics

- Studying the flow of energy from one substance or phase to another
- Previously we discussed energy \((E) \) and enthalpy \((H) \)
- Remember 1\(^{st}\) Law of Thermodynamics?
 \[
 \Delta E_{\text{Total}} = 0 \quad \text{or} \quad \text{Energy is conserved}
 \]
- This is great, but it isn’t everything
- Observe most sophisticated demo of the year…
Things tend toward dispersal or disorder

Energy tends to disperse, become disordered around the room
 • Ball stays on floor

Particles tend to disperse

Just as energy never reorganizes into the ball, the gas never reorganizes into one of the bulbs
Entropy

• We need something to explain why energy and particles like to be dispersed
• Entropy \((S) \) measures how many possible ways there are to arrange our system.
 – Many arrangements == high entropy
 \[S = k \ln W \] (Eq 14-1, Boltzmann 1877 – HUGE)

26 balls in 36 spaces
Not many arrangements
Not much entropy
\(W = 2.5 \times 10^8 \)
\(S = 19.4k \)

26 balls in 72 spaces
Lots more arrangements
Lots more entropy
\(W = 2.8 \times 10^{19} \)
\(S = 45k \)
2nd Law of Thermodynamics

- The 2nd law says that the most likely thing will be the one that actually occurs.
- Things with many arrangements are more likely to happen than things with few arrangements
 - It is more likely that energy will be distributed randomly among all the particles in the floor
 - It is extremely unlikely that a bunch of energy will spontaneously flow from all around the room into the ball, giving it a huge kick of kinetic energy
- Therefore the 2nd law says that particles will distribute evenly throughout a volume (not congregate together)
- The 2nd law says the ball will stay on the floor.

\[\Delta S_{Total} > 0 \]
Entropy related to heat flow

- In practice, W is hard to quantify
- We know S is related to heat flow

$$\Delta S = \frac{q}{T} \text{ at constant Temp (Eq 14-2)}$$

Example: You put 3 moles of water outside at -10 °C. What is entropy change of water, of the ‘outside’ and total?
 - P is constant. So we can use $q = \Delta H$
 - T is constant in the freezing ice (phase change) and in the surroundings (because they are so big).
 - So, we can use Eq 14-2
Example: freeze 3 moles water at -10 °C

Enthalpy change for 3 moles of water going to ice:

\[q = n \Delta H_{Fusion} = 3 \times 6.01 \times 10^3 \text{ J/mol} = 1.803 \times 10^4 \text{ J} \]

\[q_{water-ice} = -1.803 \times 10^4 \text{ J} \quad \text{ (must remove energy from water to freeze)} \]

\[q_{surroundings} = 1.803 \times 10^4 \text{ J} \]

\[\Delta S_{water-ice} = q / T = -1.803 \times 10^4 \text{ J} / 273.15 \text{ K} = -6.601 \text{ J/K} \]

\[\Delta S_{surroundings} = 1.803 \times 10^4 \text{ J} / 263.15 \text{ K} = 6.852 \text{ J/K} \]

\[\Delta S_{total} = \Delta S_{water-ice} + \Delta S_{surroundings} = 0.251 \text{ J/K} \]

\[\Delta S_{total} > 0 \quad \text{so water spontaneously freezes when it is cold outside!} \]
What is total entropy change if 1 mole of ice melts sitting on your desk (298 K)?

\[\Delta H_{\text{Fusion}} = 6.01 \times 10^3 \text{ J/mol} \]

0% 1. \(-22.0 \text{ J/K}\)
13% 2. \(-20.2 \text{ J/K}\)
7% 3. \(-1.83 \text{ J/K}\)
78% 4. \(1.83 \text{ J/K}\)
2% 5. \(22.0 \text{ J/K}\)
Absolute Entropy
3rd Law of Thermodynamics

- Entropy is zero for a system with only one possible arrangement
 \[S = k \ln W \quad \text{and} \quad \ln 1 = 0 \]
- Third Law of Thermodynamics: a pure, perfect crystal at 0 K has zero entropy.
 \[S_{(\text{pure, perfect crystal; } T = 0 \text{ K})} = 0 \]
Standard Molar Entropy (S°)

- Never 0

- More freedom to move means large entropy
 - Gas $S^\circ >$ Liquid $S^\circ >$ Solid S°
 - Hot something $>$ cold something

- Things with more atoms or more particles have larger entropy
 - $C_6H_{14} > C_6H_6 > C_2H_6 > CH_4$
 - $2NO_2(g) > N_2O_4(g)$

- If otherwise similar, massive things have more entropy than tiny things
 - aircraft carrier $>$ car $>$ Ar $>$ He
Examples of S°

<table>
<thead>
<tr>
<th>Substance</th>
<th>Phase</th>
<th>S° (J mol$^{-1}$K$^{-1}$)</th>
<th>Substance</th>
<th>Phase</th>
<th>S° (J mol$^{-1}$K$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Solid (diamond)</td>
<td>2.4</td>
<td>He</td>
<td>Gas</td>
<td>126.153</td>
</tr>
<tr>
<td>C</td>
<td>Solid (graphite)</td>
<td>5.74</td>
<td>Ar</td>
<td>Gas</td>
<td>154.846</td>
</tr>
<tr>
<td>Si</td>
<td>Solid</td>
<td>18.8</td>
<td>Xe</td>
<td>Gas</td>
<td>169.685</td>
</tr>
<tr>
<td>Al</td>
<td>Solid</td>
<td>28.3H</td>
<td>H_2</td>
<td>Gas</td>
<td>130.680</td>
</tr>
<tr>
<td>Cu</td>
<td>Solid</td>
<td>33.2</td>
<td>CO</td>
<td>Gas</td>
<td>197.660</td>
</tr>
<tr>
<td>Ag</td>
<td>Solid</td>
<td>42.6F</td>
<td>H_2</td>
<td>Gas</td>
<td>202.79</td>
</tr>
<tr>
<td>SiO$_2$</td>
<td>Solid</td>
<td>41.5</td>
<td>Cl_2</td>
<td>Gas</td>
<td>223.08</td>
</tr>
<tr>
<td>NaCl</td>
<td>Solid</td>
<td>72.1</td>
<td>CO_2</td>
<td>Gas</td>
<td>213.78</td>
</tr>
<tr>
<td>I$_2$</td>
<td>Solid</td>
<td>116.1</td>
<td>CH_4</td>
<td>Gas</td>
<td>184.3</td>
</tr>
<tr>
<td>H$_2$O</td>
<td>Liquid</td>
<td>69.95</td>
<td>C_2H_2</td>
<td>Gas</td>
<td>200.9</td>
</tr>
<tr>
<td>Hg</td>
<td>Liquid</td>
<td>75.9</td>
<td>C_2H_4</td>
<td>Gas</td>
<td>219.3</td>
</tr>
<tr>
<td>Br$_2$</td>
<td>Liquid</td>
<td>152.2</td>
<td>C_2H_6</td>
<td>Gas</td>
<td>229.2</td>
</tr>
</tbody>
</table>

Table 14-2 Standard Molar Entropy at 298 K
Arrange in order from the most entropy to the least. (Assume all are gas phase at the same temp)

Note that all of these have 6 carbon atoms

A) 1 mole Hexane B) 1 mole Cyclohexane
C) 1 mole Benzene D) 2 moles Propane

1. A B C D
2. D A B C
3. C B A D
4. A D B C
Entropy and conditions

- S increases at T increases
- S increases as available V increases
 - S decreases as concentration or partial pressure increase

\[
S_{(p \neq 1 \text{ bar})} = S^\circ - R \ln p
\]

\[
S_{(c \neq 1 \text{ M})} = S^\circ - R \ln c
\]

p MUST be in bar and c MUST be in molarity
Entropy Change During a Reaction

- Just \textit{products} – \textit{reactants}
- Exactly the same as Hess’s Law for ΔH!

$$
\Delta S^\circ_{\text{reaction}} = \sum \text{coeff}_{\text{products}} S^\circ_{\text{products}} - \sum \text{coeff}_{\text{reactants}} S^\circ_{\text{reactants}}
$$

- Don’t forget to balance the equation before you start and then use the correct coefficients.
- Standard entropies are always given as J/mol K, so you must account for how many moles are reacting
For next time….

Consider the breakdown of glucose \(\text{C}_6\text{H}_{12}\text{O}_6(s) \)
into carbon dioxide \((g) \) and water \((l) \).

Calculate the standard molar entropy change

AND

The standard molar enthalpy change

Assume that all products and reactants are at STP

\[
\Delta H_f \alpha\text{-glucose} = -1274.5 \text{ kJ/mol}
\]

\[
\Delta S_f \alpha\text{-glucose} = 210.3 \text{ J/mol K}
\]

Don’t work alone!
Today

• Finish up CAPA #2

Friday

• Don’t be late to lecture
• Finish reading Chapt 14
• Go to seminar
• Make plans for attending the research celebration the following Friday (the 27th)