Lecture 27 – Chapter 19, Sections 5-6 Faraday, Nernst, and Fuel Cells

- Faraday's Constant charge of an electron
- Nernst Equation nonstandard cell potential
- Applications Fuel Cells

Cell Potential and Free Energy

- We know E > 0 for spontaneous reactions
- Also $\Delta G < 0$ for spontaneous reactions
- This is no coincidence...

 $\Delta G = -nFE$

• Of course, this is still true at 1 bar, 298.15 K, 1 M, etc.

$$\Delta G^{\circ} = -nFE^{\circ}$$

- *n* is the number of moles of electrons
- *F* is the faraday constant (often a lovely script \mathscr{F})

 $F = 96485.34 \text{ C/mol} = e N_{\text{A}}$

Relating G to E

• Remember our Zn and Cu galvanic cell

Zn \rightarrow Zn²⁺ + 2e⁻ 0.7618 V (oxidation) Cu²⁺ + 2e⁻ \rightarrow Cu 0.3419 V (reduction) E[°]_{cell} = 0.3419 + 0.7618 = 1.1037 V Overall rxn is: Zn + Cu²⁺ \rightarrow Zn²⁺ + Cu (2 electrons are transferred per mole reactants)

- So, then the ΔG° must be
 - $-nFE^{\circ} = -2(96485 \text{ C/mol})(1.1037 \text{ V})$
 - = -2(96485 C/mol)(1.1037 J/C)
 - = 212,980 J/mol
 - = -212.98 kJ/mol

Relating E to K_{eq}

• Of course, we should also be able to relate E to Keq

$$-nFE^{\circ} = \Delta G^{\circ} = -RT \ln K_{eq}$$
$$E^{\circ} = \frac{RT}{nF} \ln K_{eq}$$
$$E^{\circ} = \frac{0.05916 \text{ V}}{n} \log K_{eq}$$

• So, for our Cu and Zn reaction

$$E^{\circ} = \frac{0.05916 \text{ V}}{2} \log K_{eq}$$
$$\log K_{eq} = \frac{2 \times 1.1037 \text{ V}}{0.05916 \text{ V}}$$
$$K_{eq} = 10^{37.312} = 2.05 \times 10^{37}$$

What if it's cold out?

• Since we know how to calculate ΔG at non-standard conditions, we can also calculate E

 $\Delta G = \Delta G^{\circ} + RT \ln Q$ but $\Delta G^{\circ} = -nFE^{\circ}$ $-nFE = -nFE^{\circ} + RT \ln Q$ $E = E^{\circ} - \frac{RT}{nF} \ln Q$

$$E = E^{\circ} - \frac{0.05916 \,\mathrm{V}}{n} \log Q$$
 (at 298 K)

So, if we have 1.2 M Zn²⁺ and 0.8 M Cu²⁺ what is our cell potential? (Assuming we are at 298 K)

 $Zn_{(s)} + Cu^{2+}_{(aq)} \rightarrow Zn^{2+}_{(aq)} + Cu_{(s)}$ $E^{\circ} = 1.1037 \text{ V}$ $E = E^{\circ} - \frac{0.05916 \text{ V}}{n} \log Q$ (at 298 K)

25%	1.	1.0516 V
25%	2.	1.0985 V
25%	3.	1.1089 V
25%	4.	1.1558 V

What causes a larger effect? A 10 % change in concentrations or A 10 % change in temperature?

 $E = E^{\circ} - \frac{RT}{nF} \ln Q$

Volts and Current

- Volts give the potential energy on each electron $V \sim J/C$
- Current is the number of electrons per time $A \sim C/s$

Moles of electrons
$$= n = \frac{I t}{F}$$

Redox Applications

- I said there were many back when we started Chapt 19
- Today focus on the most common: Batteries
- And also potentially one of the most useful: Fuel Cells

Alkaline Dry Cell: $2MnO_{2(s)} + H_2O_{(l)} + 2e^{-} \rightarrow Mn_2O_{3(s)} + 2OH^{-}_{(aq)}$ $Zn_{(s)} + 2OH^{-}_{(aq)} \rightarrow Zn(OH)_{2(s)} + 2e^{-}$

$$2MnO_{2(s)} + H_2O_{(l)} + Zn_{(s)} \rightarrow Mn_2O_{3(s)} + Zn(OH)_{2(s)}$$

E is about 1.5 V 'Dry' because the paste contains little water compared to 'wet' cell (car battery).

Zinc-air (watch) Battery

- Uses atmospheric oxygen as reactant
- All materials always in constant concentration (activity) so the cell's voltage is always the same

- Aside from temperature variation of course

Lead Storage Battery (wet cell)

• Provides large current

• Rechargeable many times

$$PbO_{2(s)} + HSO_{4(aq)} + 3H_{3}O_{(aq)}^{+} + 2e^{-} \rightarrow PbSO_{4(s)} + 5H_{2}O_{(l)}$$
$$Pb_{(s)} + HSO_{4(aq)}^{-} + H_{2}O_{(l)} \rightarrow PbSO_{4(s)} + H_{3}O_{(aq)}^{+} + 2e^{-}$$

$$Pb_{(s)} + 2HSO_{4(aq)} + PbO_{2(s)} + 2H_{3}O_{(aq)} \rightarrow 2PbSO_{4(s)} + 4H_{2}O_{(b)}$$

Fuel Cell

- Essentially the combustion of hydrogen
- But reduction of O_2 and oxidation of H_2 carried out in separate places.
- Makes lots of electricity and only waste is $H_2O!$
- But, H₂ is hard to make and dicey to transport

Fuel Cell

- Fuel cell vehicles with H₂ may be tough
- One alternative is to 'burn' hydrocarbons
- Still get CO₂ (greenhouse gas) as product
- But, do not get any nasty CO, NO, NO₂, etc.
- Also get more energy per unit fuel than combustion engine

Today

- Work on CAPA #16 but not due until Wed!
- Good chance to review old material!

Wednesday

- Finish CAPA #16
- Keep reviewing

Thursday

• Chemistry Seminar 4:00