#### Lecture 12 – Chapter 15, Section 7 Catalysis



- Catalysis definition and review
- Reaction Energy Profiles modified
  - Homogeneous vs. Heterogeneous
    - Biological catalysts enzymes

# Catalyst

- A catalyst increases reaction rate without appearing in the OVERALL reaction
- Catalyst is still involved in the reaction
  - But, only with the transition state
  - Catalyst is does NOT affect reactants or products

# If a catalyst does not affect reactants or products, what must be true?

| 20% | 1. It makes $\Delta H_{rxn}$ more negative                  |
|-----|-------------------------------------------------------------|
| 20% | 2. It makes $\Delta H_{rxn}$ more positive                  |
| 20% | 3. It makes $\Delta S_{rxn}$ more negative                  |
| 20% | 4. It makes $\Delta S_{rxn}$ more positive                  |
| 20% | 5. It has no effect on $\Delta H_{rxn}$ or $\Delta S_{rxn}$ |



#### Catalyst – new mechanism

- A catalyst changes the reaction mechanism
- New mechanism will have a completely different transition state (but identical reactants and products)
- Thus, new mechanism has a different activation energy
- If catalyst is good,  $E_a$  will be much lower

$$k = Ae^{-\frac{E_a}{RT}}$$

- Catalyst also affects Arrhenius prefactor, A
  - But, this is much less important than  $E_a$ , so usually ignore this

#### Example – Ozone

• Recall CFC's have big effect on atmospheric ozone levels





#### Compare rates

- Uncatalyzed reaction:  $O_3 + O \rightarrow 2O_2$   $E_a = 17.1 \text{ kJ/mol}$   $k = 4.1 \times 10^5 \text{ (Ms)}^{-1}$ (rate per  $O_2$ )  $k = 8.2 \times 10^5 \text{ (Ms)}^{-1}$
- Catalyzed reaction:  $O_3 + Cl \rightarrow O_2 + OCl \quad E_{al} = 2.1 \text{ kJ/mol} \qquad k = 5.2 \times 10^9 \text{ (Ms)}^{-1}$  $ClO + O \rightarrow Cl + O_2 \qquad E_{a2} = 0.4 \text{ kJ/mol} \qquad k = 2.2 \times 10^{10} \text{ (Ms)}^{-1}$

- Note that uncatalyzed reaction still occurs
  - Presence of catalyst provides a faster pathway, doesn't prohibit anything

Suppose a reaction (at STP) has a rate of  $4.6 \times 10^4$  (Ms)<sup>-1</sup> and an activation energy of 15 kJ/mol.

If a catalyst speeds the reaction up to  $7.5 \times 10^6$  (Ms)<sup>-1</sup>, what must the new activation energy be? (Assume that *A* does not change.)

| 20% | 113 kJ/mol    |
|-----|---------------|
| 20% | 2. 2.4 kJ/mol |
| 20% | 3. 3.4 kJ/mol |
| 20% | 4. 15 kJ/mol  |
| 20% | 5. 16 kJ/mol  |

#### Heterogeneous vs. Homogeneous

- In ozone example, the catalyst was same phase as reactants and products (all gasses)
  - Homogeneous
- Often catalyst is a different phase
  - For example, car catalytic converter is solid phase catalyzing gas phase reactions
  - Haber process involved solid phase catalyst with gas phase reaction
  - Heterogeneous

#### Example 2 – catalytic converter

• Nifty engineering catalyzes several reactions in one device

 $2 \text{ CO} + \text{O}_2 \rightarrow 2 \text{ CO}_2$ various hydrocarbons +  $\text{O}_2 \rightarrow \text{CO}_2 + \text{H}_2\text{O}$  $2 \text{ NO} \rightarrow \text{N}_2 + \text{O}_2$ 

- All gas phase reactions, catalyzed by several different solid phase catalysts
  - Mostly platinum
  - Also CuO,  $Cr_2O_3$ , palladium, rhodium

#### Heterogeneous mechanism

Separation of phases makes mechanism of heterogeneous catalysts slightly more complicated

- Reactants bind to surface of catalyst (adsorption)
  a. Interaction with surface weakens bonds in reactants
- 2. Bound reactants wander over 2-D catalyst surface
- 3. Bound reactants collide and react
- 4. Products escape from surface of catalyst (desorption)

### Enzymes

- Simply biological catalysts
- Almost always heterogeneous catalyst
  - Reactants and products are dissolved in solution
  - Catalyst acts as a solid (though also usually dissolved in solution)
- Reactant that **binds** (absorbs) to enzyme is called the **substrate**
- Particular way the enzyme interacts with substrate stabilizes the transition state lowers activation energy

#### Enzyme mechanism

- Called the Michaelis-Menten mechanism
- Looks just like general heterogeneous mechanism we had before

 $E \cdots S (+ R) \rightarrow E \cdots P$ 

- 1. Substrate binds to enzyme  $E + S \rightarrow ES$
- 2. E-S interactions change shape  $ES \rightarrow E \cdots S$
- 3. React to form products
- 4. Product is released  $E \cdots P \rightarrow E + P$
- Overall reaction is either  $E + S \rightarrow E + P$ or  $E + S + R \rightarrow E + P$ 
  - So, enzyme does not 'take part' catalyst

### Enzyme example - LADH



# Today

- Finish CAPA #7 (due tomorrow)
- Get extremely serious about exam review

# Wednesday

- We'll review together
- Please work lots and lots of problems