Lecture 27
Chapter 9 Sections 2-3

- Lewis Structures
- Resonance
- VSEPR
Announcements

- CAPA #15 due tomorrow
- Seminar tomorrow 11:00
- Seminars Friday 3:00 and 4:00
- Seminar next Tuesday at 11:00
Building the Lewis Structure

An outer atom other than hydrogen is most stable when it is associated with an octet of electrons.
Example: CH_3NH_2

BUILDING LEWIS STRUCTURES

Step 1 Count the valence electrons.
Step 2 Assemble the bonding framework, placing two electrons per bond.
Step 3 Place three nonbonding pairs of on electrons each outer atom, except H.
Step 4 Assign the remaining valence electrons to inner atoms.
Step 5 Optimize electron configurations of the inner atoms.
Step 6 Identify equivalent or near-equivalent Lewis structures.
Example: Acrylonitrile \(\text{H}_2\text{CCHCN} \)

BUILDING LEWIS STRUCTURES

Step 1 Count the valence electrons.
Step 2 Assemble the bonding framework, placing two electrons per bond.
Step 3 Place three nonbonding pairs of on electrons each outer atom, except H.
Step 4 Assign the remaining valence electrons to inner atoms.
Step 5 Optimize electron configurations of the inner atoms.
Step 6 Identify equivalent or near-equivalent Lewis structures.
Example for group work: ethylene H_2CCH_2
Beyond the Octet

• The most common elements: C, N, O always have filled octets
• Elements in the 3rd row or higher can have more than an octet if needed
• Valence d orbitals provide root to accommodate more than eight valence electrons.
Example: SF_4

BUILDING LEWIS STRUCTURES

- **Step 1** Count the valence electrons.
- **Step 2** Assemble the bonding framework, placing two electrons per bond.
- **Step 3** Place three nonbonding pairs of on electrons each outer atom, except H.
- **Step 4** Assign the remaining valence electrons to inner atoms.
- **Step 5** Optimize electron configurations of the inner atoms.
- **Step 6** Identify equivalent or near-equivalent Lewis structures.
Formal Charge

- Formal charge =
 \((\text{Normal valence electrons}) - (\text{Assigned valence electrons})\)

\[FC = \text{Normal valence} - (\frac{1}{2}\text{bonding e}^- + \text{lone pair e}^-) \]

\textit{e.g.} formaldehyde \(\text{H}_2\text{CO} \)

\[
\begin{array}{c}
\text{H} \quad \text{H} \\
\text{C} \quad \text{H} \\
\end{array}
\quad \leftrightarrow
\begin{array}{c}
\text{H} \quad \text{H} \\
\text{C} \\
\end{array}
\]
Example for you: phosphoric acid H_3PO_4

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Count the valence electrons.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>Assemble the bonding framework, placing two electrons per bond.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Place three nonbonding pairs of on electrons each outer atom, except H.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Assign the remaining valence electrons to inner atoms.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Optimize electron configurations of the inner atoms.</td>
</tr>
<tr>
<td>Step 6</td>
<td>Identify equivalent or near-equivalent Lewis structures.</td>
</tr>
</tbody>
</table>
Resonance

- When multiple, equivalent Lewis structures may be drawn
- Resonance indicates stability
Example for you: CO_3^{2-}

BUILDING LEWIS STRUCTURES

<table>
<thead>
<tr>
<th>Step</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Count the valence electrons.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Assemble the bonding framework, placing two electrons per bond.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Place three nonbonding pairs of on electrons each outer atom, except H.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Assign the remaining valence electrons to inner atoms.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Optimize electron configurations of the inner atoms.</td>
</tr>
<tr>
<td>Step 6</td>
<td>Identify equivalent or near-equivalent Lewis structures.</td>
</tr>
</tbody>
</table>
Molecular Shapes
Electron Pair Repulsion

• Molecules have three dimensional shape.
 – The 3-D shape defines the properties of the molecules.
• How do we predict the shape?
• **VSEPR Theory** – valence shell electron-pair repulsion theory
 – Electron pairs in the outer shell of an atom try to get as far away from each other as possible
 – Why? Because like charges repel…they want to be far away from each other.
• The result? 2 electron pairs ➔ line
 3 electron pairs ➔ trigonal planar (triangle)
 4 electron pairs ➔ tetrahedron (pyramid)
Electron pairs get away from each other

2 electron ‘groups’

Two C–H bonds optimally separated in space.

3 electron groups

Three C–H bonds optimally separated in space.

4 electron groups

Four C–H bonds optimally separated in space.
• In the plane of the paper, it looks like the bond angles are 90°.
• But, we know that the molecule exists in three dimensions.
• The bonds are really optimized around the central carbon.
• The shape is called tetrahedral and has bond angles of 109.5°.
Today

- CAPA #15 due tomorrow
- Seminar tomorrow

Friday

- Finish Chapt 9
- Two seminars 3:00 SC1019 4:00 SC1000

Remember: You are done with the homework when you understand it!