Molecular Dynamics Simulations of the tRNA with Modified Bases

Nina E. McCrate
Mentor: Maria C. Nagan
Truman State University
Basic Explanation of Nucleic Acids

1 Nitrogenous Base + 1 Sugar (ribose/deoxyribose) + 1 Phosphate = 1 Nucleotide

Nucleoside (monomer)

4 * Nucleoside = RNA or DNA strand (polymer)
RNA Structure
Modified Bases

If it’s not

adenine

uracil

guanine

cytosine

then it’s modified.

2-methylthioadenine

2-thiouracil

5-methylguanine

3-methylcytosine
Central Dogma of Molecular Biology
tRNA Secondary and Tertiary Structure

Human tRNA$_{\text{Lys},3}$
Reading the Blueprint
Modified Bases in tRNA

- Adenosine
 - 2-methylthio-N6-threonylcarbamoyl adenosine ($ms^{2}t^{6}A$)
 - 2-thiomethyl-N6-dimethylallyl adenosine ($ms^{2}l^{6}A$)
- Pseudouridine (ψ)
- 5-methoxycarbonylmethyl-2-thiouridine ($mcm^{5}s^{2}U$)
- Dihydouridine (D)
Human ASL$^{\text{Lys,3}}$ Requires Modified Bases for Binding

- Three modified bases are present in the anticodon-stem loop of human tRNA at positions 34, 37, and 39:
 - $\text{m}^{2}\text{t}^{6}\text{A}$ and $\text{mcm}^{5}\text{s}^{2}\text{U}$ are required to achieve wild-type binding.
Sequences of Constructs and Relative Binding Affinities

Molecular Dynamics: Overview

- Simulation of molecular motion over time
- Time dependent structural dynamics at atomic resolution
 - hydrogen bonding patterns
 - stacking patterns
 - ion binding
 - helical parameters
Molecular Dynamics: Mathematics

Newton’s Equation:

\[F_i(t) = -\frac{\partial U(r^N_{i})}{\partial r_i} = m_i a(t) \]

Potential Function:

\[U(r) = \sum_{\text{bonds}} K_r (r - r_{eq})^2 + \sum_{\text{angles}} K_\theta (\theta - \theta_{eq})^2 + \]

\[+ \sum_{\text{dihedrals}} \frac{V_n}{2} (1 + \cos[n\phi - \gamma]) + \]

\[\sum_{\text{atoms}} \left[\frac{a_{ij}}{r_{ij}^{12}} - \frac{b_{ij}}{r_{ij}^6} \right] + \sum_{\text{atoms}} \frac{q_i q_j}{\varepsilon r_{ij}} \]

Cornell et al., J. Am. Chem. Soc. 1995

Cheatham et al., Biomol. Struct. Dyn. 1999
Structures of the $\text{ASL}^{\text{Lys},3}$

X-ray Structures

Bénas et al., RNA, 2000

Murphy et al., Nat. Struct. Biol., 2004

NMR Structure

Stuart et al., Biochemistry, 2000
ms²t⁶A Prevents Displacement of U36

- without the ms²t⁶ modification, A37 displaces U36 and stacks in its place
Quantifying Displacement of U36

- Solvent accessible surface area (SASA) of U36 (only the 6-membered ring) was measured.
- When U36 was pushed out into solution, SASA rose significantly.

<table>
<thead>
<tr>
<th>ASL<sub>Lys,3</sub></th>
<th>SASA of U36 (Å²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>tRNA<sup>Lys,3</sup> mcm<sup>6</sup>s<sup>2</sup>U34, ms<sup>2</sup>t<sup>6</sup>A37, ψ39 (wt)</td>
<td>150 (10)</td>
</tr>
<tr>
<td>tRNA<sup>Lys,3</sup> mcm<sup>6</sup>s<sup>2</sup>U34, ms<sup>2</sup>t<sup>6</sup>A37</td>
<td>160 (20)</td>
</tr>
<tr>
<td>tRNA<sup>Lys,3</sup> ms<sup>2</sup>t<sup>6</sup>A37, ψ39</td>
<td>150 (10)</td>
</tr>
<tr>
<td>tRNA<sup>Lys,3</sup> ms<sup>2</sup>t<sup>6</sup>A37</td>
<td>160 (10)</td>
</tr>
<tr>
<td>tRNA<sup>Lys,3</sup> mcm<sup>6</sup>s<sup>2</sup>U34, ψ39</td>
<td>230 (30)</td>
</tr>
<tr>
<td>tRNA<sup>Lys,3</sup> mcm<sup>6</sup>s<sup>2</sup>U34</td>
<td>230 (10)</td>
</tr>
<tr>
<td>tRNA<sup>Lys,3</sup> ψ39</td>
<td>250 (10)</td>
</tr>
<tr>
<td>tRNA<sup>Lys,3</sup> (unmodified)</td>
<td>250 (10)</td>
</tr>
</tbody>
</table>
The Anticodon Exhibits a Stair Stepped Conformation
Quantifying Stair Stepped Configuration of Anticodon

<table>
<thead>
<tr>
<th>ASL<sup>Lys,3</sup></th>
<th>% occupancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>tRNA<sup>Lys,3</sup> mcm<sup>5</sup>s<sup>2</sup>U34, ms<sup>2t<sup>6</sup>A37, ψ39 (wt)</td>
<td>96</td>
</tr>
<tr>
<td>tRNA<sup>Lys,3</sup> mcm<sup>5</sup>s<sup>2</sup>U34, ms<sup>2t<sup>6</sup>A37</td>
<td>6</td>
</tr>
<tr>
<td>tRNA<sup>Lys,3</sup> ms<sup>2t<sup>6</sup>A37, ψ39</td>
<td>92</td>
</tr>
<tr>
<td>tRNA<sup>Lys,3</sup> ms<sup>2t<sup>6</sup>A37</td>
<td>11</td>
</tr>
<tr>
<td>tRNA<sup>Lys,3</sup> mcm<sup>5</sup>s<sup>2</sup>U34, ψ39</td>
<td>100</td>
</tr>
<tr>
<td>tRNA<sup>Lys,3</sup> mcm<sup>5</sup>s<sup>2</sup>U34</td>
<td>4</td>
</tr>
<tr>
<td>tRNA<sup>Lys,3</sup> ψ39</td>
<td>100</td>
</tr>
<tr>
<td>tRNA<sup>Lys,3</sup> (unmodified)</td>
<td>8</td>
</tr>
</tbody>
</table>

Classification:

- Distance vector was decomposed into Cartesian coordinates and compared against wild type configuration.
- Vectors normal to the uridine ring planes in the anticodon were used to determine if bases were parallel.
Pseudouridine Facilitates the Formation of a Water Bridge

- In the presence of pseudouridin a water bridge forms between ψ_{39} NH1 and A38 O2P through hydrogen bonding interactions
Quantification of Water Bridge

- A water bridge was considered present when:
 - hydrogen bonds existed simultaneously between a water, A38 O2P, and any hydrogen bonding donor or acceptor on U39 or NH1 if \(\psi_{39} \) was present
 - there were \(\leq 3 \) ps between consecutive interactions

<table>
<thead>
<tr>
<th>ASL(^{\text{Lys,3}})</th>
<th>% simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>tRNA(^{\text{Lys,3}}) mcm(^5)s(^2)U34, ms(^2)t(^6)A37, (\psi_{39}) (wt)</td>
<td>96</td>
</tr>
<tr>
<td>tRNA(^{\text{Lys,3}}) mcm(^5)s(^2)U34, ms(^2)t(^6)A37</td>
<td>6</td>
</tr>
<tr>
<td>tRNA(^{\text{Lys,3}}) ms(^2)t(^6)A37, (\psi_{39})</td>
<td>92</td>
</tr>
<tr>
<td>tRNA(^{\text{Lys,3}}) ms(^2)t(^6)A37</td>
<td>11</td>
</tr>
<tr>
<td>tRNA(^{\text{Lys,3}}) mcm(^5)s(^2)U34, (\psi_{39})</td>
<td>100</td>
</tr>
<tr>
<td>tRNA(^{\text{Lys,3}}) mcm(^5)s(^2)U34</td>
<td>4</td>
</tr>
<tr>
<td>tRNA(^{\text{Lys,3}}) (\psi_{39})</td>
<td>100</td>
</tr>
<tr>
<td>tRNA(^{\text{Lys,3}}) (unmodified)</td>
<td>8</td>
</tr>
</tbody>
</table>
Summary

- tRNA is the bridge between nucleic acids and proteins
- Modified bases are required for human tRNA\(^{\text{Lys,3}}\) to bind to its cognate codon.
- In the absence of the ms\(^2t^6\) modification at the 37th position, adenine displaces U36 in the anticodon face.
- Pseudouridine at the 39th position facilitates the formation of a water bridge between itself and the phosphate backbone at A38.
Acknowledgements

Past Nagan Students:
- Mychel Varner (now at UT-Austin)
- Amanda Combs (now at UC-Boulder)
- Katie Schembri
- Kenny Kim

Funding provided by:
- DUE-0431664 (NSF-STEP)
- Truman State University Summer Stipends
- The Petroleum Research Fund (41701-GB7)