Exploring the Reaction Mechanism and Origin of Regioselectivity in Di-Nickel Catalyzed Alkyne Cyclotrimerization

Trey Pankratz, Jake Lindale, Ryan L. Hollingsworth, Stanislav Groysman, Richard L. Lord

Grand Valley State University; Wayne State University
Why do we study first-row transition metal catalysts?

How much Pt, Pd, or Ni can you get for $5000 today?
Why do we study first-row transition metal catalysts?

How much Pt, Pd, or Ni can you get for $5000 today?

5.03 oz Pt
Why do we study first-row transition metal catalysts?

How much Pt, Pd, or Ni can you get for $5000 today?

5.03 oz Pt

6.73 oz Pd
Why do we study first-row transition metal catalysts?

How much Pt, Pd, or Ni can you get for $5000 today?

5.03 oz Pt
6.73 oz Pd
17,056 oz Ni
0.533 US tons Ni
Previous Methods of Synthesis

- Reactivity of mono-metallic complexes has been studied extensively

- Comparatively little regioselectivity due to the stereochemistry around metal center

DOI: 10.1039/C6DT03389J
Previous Methods of Synthesis

- We know relatively little about the reactivity of bi-metallic complexes in comparison to our knowledge of mono-metallic complexes.

- The M-M distance, which can be controlled with the choice of ligand, offers alternate reactivity and selectivity over mono-metallic catalysts.

DOI: 10.1039/C6DT03389J
Previous Methods of Synthesis

- Cotton reported that the above bi-metallic Nb and Ta complexes yielded mixtures of the 1,3,5 and 1,2,4-substituted benzenes

- Nagasawa expanded the reaction scope, showing the bi-Nb complex regioselectively forms the 1,3,5-substituted products with terminal alkynes

DOI: 10.1039/C6DT03389J
What sparked interest

- Uyeda reported the regioselective synthesis of 1,2,4-substituted benzenes with a novel naphthyridine diimine-bridged di-nickel complex

DOI: 10.1021/jacs.5b04990
Uyeda’s findings

- Found that this reaction heavily favored 1,2,4-substituted product
- Asked the question: Why?

DOI: 10.1021/jacs.5b04990
Our system

- Major difference between our ligand and Uyeda’s is that the xanthene backbone has a higher degree of flexibility than the naphthyridine backbone.

DOI: 10.1039/C6DT04532D
Basis Set Effects

<table>
<thead>
<tr>
<th>Basis set</th>
<th>Ni-N (1)</th>
<th>Ni-N (2)</th>
<th>C-C (alkyne)</th>
<th>Imine C-C</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-31G(d)</td>
<td>0.013</td>
<td>0.003</td>
<td>0.018</td>
<td>0.006</td>
</tr>
<tr>
<td>6-311G(d)</td>
<td>0.028</td>
<td>0.023</td>
<td>0.004</td>
<td>0.004</td>
</tr>
<tr>
<td>LANL2DZ/6-31G(d)</td>
<td>0.070</td>
<td>0.096</td>
<td>0.038</td>
<td>0.000</td>
</tr>
<tr>
<td>SDD/6-31G(d)</td>
<td>0.060</td>
<td>0.042</td>
<td>0.000</td>
<td>0.002</td>
</tr>
</tbody>
</table>
Differences in Spin Surfaces for Various Intermediates Relative to Singlet Surface

<table>
<thead>
<tr>
<th>Basis set</th>
<th>Spin State</th>
<th>Species</th>
<th>ΔH</th>
<th>ΔE</th>
<th>ΔG</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-31G(d)</td>
<td>Triplet</td>
<td>1</td>
<td>1.05</td>
<td>1.01</td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>-0.37</td>
<td>-0.25</td>
<td>-0.46</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>5.17</td>
<td>3.84</td>
<td>3.80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>2.36</td>
<td>2.34</td>
<td>1.46</td>
</tr>
<tr>
<td></td>
<td>Quintet</td>
<td>1</td>
<td>8.33</td>
<td>8.10</td>
<td>7.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>6.62</td>
<td>6.41</td>
<td>4.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>20.07</td>
<td>20.27</td>
<td>17.63</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>13.71</td>
<td>13.16</td>
<td>10.84</td>
</tr>
<tr>
<td>6-311G(d)</td>
<td>Triplet</td>
<td>1</td>
<td>2.61</td>
<td>2.60</td>
<td>1.55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1.80</td>
<td>1.98</td>
<td>0.64</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>4.46</td>
<td>3.76</td>
<td>2.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>1.02</td>
<td>1.04</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>Quintet</td>
<td>1</td>
<td>11.39</td>
<td>11.09</td>
<td>9.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>8.02</td>
<td>7.85</td>
<td>5.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>22.88</td>
<td>22.87</td>
<td>21.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>12.62</td>
<td>12.14</td>
<td>9.48</td>
</tr>
</tbody>
</table>
Reactivity Findings

- We found the reactivity of our complex to be different than Uyeda’s.
- We did not have the same level of regioselectivity as Uyeda did, thus forming much more of the 1,3,5 isomer.
- We also produced cyclooctatetraene products.

DOI: 10.1039/C6DT04532D
Suggested Causes

- One possible explanation for this divergent reactivity would be the flexibility of our ligand. The rigidity of Uyeda’s system causes very little change in the Ni-Ni distance, whereas our system allows for more variation in the Ni-Ni distance.

Ni-Ni: 2.560 Å
Ni-Ni: 2.534 Å
Current / Future work

- Investigate both electronic and other possible causes for the regioselectivity, or lack thereof, of our reaction