Stabilizing Molecular Orbital Interactions in the Anticodon of Transfer RNA

Emily C. Hopson and Elizabeth E. Koballa
Advisors: Dr. Maria Nagan and Dr. Eric Patterson
Truman State University, Kirksville, MO
During protein synthesis, tRNA anticodons are matched to mRNA codons and the correct amino acid is incorporated into the growing protein chain.
Proteins are Essential for Function

- Enzymatic - catalyze chemical reactions
- Structural - support
- Transport - vehicle for particle movement
- Receptor - cell recognition and particle reception
RNA and Nucleotides

- Three types – ribosomal (rRNA), messenger (mRNA), and transfer (tRNA)
- All formed by a nucleotide chain

Four common bases in RNA: A, G, C, and U
tRNA

- Translates mRNA information from codon into specific amino acids
- Carries amino acids to ribosomes to incorporate into polypeptide chain
- 73-93 nucleotides long

Five regions:
- D loop
- TΨC-loop
- Acceptor stem
- Variable arm
- Anticodon

tRNA from *S. cerevisiae* or Baker’s Yeast
Anticodon-Codon Recognition

- Anticodon nucleotides at positions 34-36 of tRNA molecule
- Three anticodon nucleotides must be in a stair-stepped conformation to read mRNA codon nucleotides in the context of the ribosome.

Anticodon bases of tRNA (red) reading codon bases on mRNA (green). Note the stair-stepped base stacking of the tRNA anticodon.
Anticodon Stair-Stepped Conformation

- Free tRNA anticodon exhibits stair-stepped conformation
- Stabilizing forces in anticodon conformation are unclear
Role of Modified Bases in tRNA

- Naturally occurring modified bases found in tRNA are required for correct recognition of mRNA.

- Base modification at the 37th position is required for stair-stepped conformation in tRNA$^{\text{Lys,3}}$.

Human tRNA$^{\text{Lys,3}}$

- methylthio-N6-threonylcarbamoyl adenosine (ms2t6A)
- 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U)
Goals

- To understand the stabilization of the tRNA anticodon through the molecular orbital interactions.
- To quantify the specific interactions of the stair-stepped conformation.
- To determine how modified bases at the 37th position contribute additional stability.
Strategy

- Examine molecular orbitals and the interactions between bases in x-ray crystal structures of anticodons
- Extend analysis to systems with modified bases at the 37th position

Anticodon (34-36)

34-36 with Modified Base at 37
Methods

- Structures obtained from published tRNA structures
 - Edited to bases 34-36 (10 structures) or 34-37 (6 structures)
 - Addition of hydrogen atoms to the tRNA molecules
 - Hydrogen atom positions geometrically optimized

- Arnott standard A’-RNA trimers CUC and CAA were constructed for comparison with crystal structures
Calculations

- Density Functional: M05-2X
 - Accurate with non-bonded interactions
 - Mean unsigned error of 0.78 kcal/mol when calculating the binding energies for amino acid residue pairs

- Basis set: 6-31+G(d,p)
 - ~1400 functions for the anticodon
 - Diffuse functions accommodate lone pairs and overall negative charge

- Program: Gaussian 03 Revision E.01
Natural Bond Orbital Analysis

- Natural bond orbital (NBO) analysis calculates the contributions of traditional atomic and hybridized orbitals to the MO picture.

- Perturbation theory energy analysis identifies donor-acceptor MO pairs that stabilize the molecule.

The highest occupied molecular orbital of water as predicted by NBO analysis.
Results

- Most calculations have completed for the trimer systems, but for the tetramer systems they are incomplete.
- Dimers of bases 34-37 are also being evaluated to expedite results on modified bases.
 - Dimers containing a modified base in position 34 had a greater number of significant interactions.
- Numerous significant MO interactions are common in the crystal structures, for example:
 - A lone pair on an oxygen in the phosphate group of residue 34 interacting with an antibonding C-H orbital on the nucleotide
 - A lone pair on the cyclic oxygen in the ribose of residue 36 interacting with an antibonding molecular orbital on the 2’ C-H
34th Phosphate Oxygen & C8-H/C6-H

10.9 kcal/mol, PDB ID 2TRA
36th 4’ Oxygen & 35th 2’C-H

3.34 kcal/mol, PDB ID 2UUB
Conclusions

- Significant interactions found between separate nucleotides and between nucleotides and the sugar-phosphate backbone.
 - Lone pairs of electrons on the numerous oxygen atoms are often the donating orbital.
 - Antibonding orbitals are often the accepting orbital.
- Without standard RNA interactions for comparison, it is impossible to determine which stabilizing interactions are unique to the stair-stepped conformation in the anticodon.
Future Direction

- Further analysis and compilation of NBO output
- Completion of standard RNA calculations
- Investigation of NWChem as a Gaussian alternative for tetramer calculations using GridChem
Acknowledgements

Dr. Maria Nagan, Research Advisor
Dr. Eric Patterson, Research Advisor
Oscar A. McCrate (graduate student, Stanford)

Funding Provided by:

- Petroleum Research Fund (41701-GB7)
- National Science Foundation (RUI: CHE-0746096; MRI: CHE-0821581)
- STEP DUE#0431664