Chapter 3 homework due Monday, 5:00 pm
Chapter 1 and 2 keys posted later today.
Chem and Environment news
 – Brittany Daley
Monday (info by 8:00 pm today)
 – Brian Kolb
Exam I next Wednesday

How many outer shell (bonding) electrons in a molecule of ammonia NH₃?

38%	1	3
0%	2	5
82%	3	8
0%	4	10
0%	5	11

How many outer shell (bonding) electrons in a molecule of methane CH₄?

0%	1	4
0%	2	6
100%	3	8
0%	4	10
0%	5	12

General behavior of IVA, VA, VIA, VIIA elements
The best way to see the bonds due to sharing electrons is through some examples:
– H₂O
 Carbon has 4 bonds (shares 4 pair of e⁻)
 Oxygen has 2 bonds (shares 2 pair of e⁻)
 Hydrogen has 1 bonds (shares 1 pair of e⁻)
 Nitrogen has 3 bonds (shares 3 pair of e⁻)
– NH₃
 Carbon has 4 bonds (shares 4 pair of e⁻)
 Oxygen has 2 bonds (shares 2 pair of e⁻)
 Hydrogen has 1 bonds (shares 1 pair of e⁻)
 Nitrogen has 3 bonds (shares 3 pair of e⁻)

– H₂O
 Carbon has 4 bonds (shares 4 pair of e⁻)
 Oxygen has 2 bonds (shares 2 pair of e⁻)
 Hydrogen has 1 bonds (shares 1 pair of e⁻)
 Nitrogen has 3 bonds (shares 3 pair of e⁻)
– NH₃
 Carbon has 4 bonds (shares 4 pair of e⁻)
 Oxygen has 2 bonds (shares 2 pair of e⁻)
 Hydrogen has 1 bonds (shares 1 pair of e⁻)
 Nitrogen has 3 bonds (shares 3 pair of e⁻)
– CH₄
 Carbon has 4 bonds (shares 4 pair of e⁻)
 Oxygen has 2 bonds (shares 2 pair of e⁻)
 Hydrogen has 1 bonds (shares 1 pair of e⁻)
 Nitrogen has 3 bonds (shares 3 pair of e⁻)
General behavior of IVA, VA, VIA, VIIA elements

- The best way to see the bonds due to sharing electrons is through some examples:
 - H_2O
 - NH_3
 - CH_4
 - O_2

 Carbon has 4 bonds (shares 4 pair of e-)
 Oxygen has 2 bonds (shares 2 pair of e-)
 Hydrogen has 1 bond (shares 1 pair of e-)
 Nitrogen has 3 bonds (shares 3 pair of e-)

Not all covalent bonds are the same (sec 3.14)

- Electrons in a covalent bond between two of the same atoms are shared equally. This is a *non-polar bond*.
 - Cl_2, O_2, N_2, etc.
- Electrons in a covalent bond between two different atoms are not shared equally. “elements that lie to the upper right of the periodic table exert a greater attraction for shared electrons” p.51. This is a *polar bond* and is most important if one of the atoms is Cl, F, N or O.
 - HCl, NH_3, H_2O
- The three dimensional arrangement of polar bonds in a molecule will determine if the overall molecule is polar.

3D model vs. 2D Lewis

- Build the following molecules and sketch them in your notebook. Each group member build at least one model. Compare to Lewis structure - include all valence electrons in the drawing,
 - CH_4 (or CH_3OH)
 - H_2O
 - NH_3
 - CH_4
 - O_2
 - CO_2

 Carbon - black
 Oxygen - red
 Hydrogen - yellow
 Nitrogen - blue
 Sticks - single bonds
 Springs - double bonds

Why is polarity important??

- Many important physical and chemical properties are influenced by molecular polarity.
- Why is methane a gas that does not dissolve in water and methanol a liquid that easily dissolves in water?
- Why does sodium chloride dissolve and conduct electricity while sugar dissolves but does not conduct electricity?
- Why do oil and water not mix well?
- Whether or not a compound easily dissolves in water is significant in terms of how it moves through the environment and how it can be monitored and detected.